Total Least Squares Approach in Regression Methods
نویسنده
چکیده
Total least squares (TLS) is a data modelling technique which can be used for many types of statistical analysis, e.g. a regression. In the regression setup, both dependent and independent variables are considered to be measured with errors. Thereby, the TLS approach in statistics is sometimes called an errors-invariables (EIV) modelling and, moreover, this type of regression is usually known as an orthogonal regression. We take an EIV regression model into account. Necessary algebraic tools are introduced in order to construct the TLS estimator. A comparison with the classical ordinary least squares estimator is illustrated. Consequently, the existence and uniqueness of the TLS estimator are discussed. Finally, we show the large sample properties of the TLS estimator, i.e. a strong and weak consistency, and an asymptotic distribution.
منابع مشابه
A robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملFuzzy Hybrid least-Squares Regression Approach to Estimating the amount of Extra Cellular Recombinant Protein A from Escherichia coli BL21
Introduction: Immune Protein A is a component with a vast spectrum of biochemical, biological and medical usages. The coding gene of this protein was extracted from Staphylococcus aureus and was cloned and expressed in Escherichia coli bacteria. Suitable statistical methods are utilized to optimize expression conditions for evaluating experiment accuracy , guarantee the accuracy of subsequent ...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملDetermination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression
A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...
متن کاملEvaluation of hybrid fuzzy regression capability based on comparison with other regression methods
In this paper, the difference between classical regression and fuzzy regression is discussed. In fuzzy regression, nonphase and fuzzy data can be used for modeling. While in classical regression only non-fuzzy data is used. The purpose of the study is to investigate the possibility of regression method, least squares regression based on regression and linear least squares linear regression met...
متن کامل